Comparison of Body Mass Index, Body Fat Percentage and Neck Circumference as Tools for Evaluation of Obesity

Chitra Pillai¹, Prasad Udhoji¹, Sachin Rathod¹, Kanagasabapathy Pillai²

¹ T N Medical College & BYL Nair Hospital, Mumbai 400008

² Seth G S Medical College & KEM Hospital, Parel, Mumbai 400012

Correspondence to:

Chitra Pillai (pillai_c@yahoo.com)

Received: 29.08.2011 Accepted: 28.03.2012

DOI: 10.5455/njppp.2012.2.167-

171

ABSTRACT

Aims & Objective: To assess whether Neck Circumference (NC) can be used as a tool to evaluate body mass status.

Materials and Methods: This study was conducted in a Medical College Hospital after obtaining necessary permission from the institute and Ethics Committee. Every subject was informed about the test, the measurements those need to be taken, the aim of the study and signed consent form was taken from every subject. Total of 228 subjects, 136 males and 92 females participated in this study. Their BMI, BFP and NC were recorded and tested for correlation of NC with BMI and with BFP. The statistical analysis was done by Linear regression analysis performed using Graph Pad Prism version 5.00 for Windows, Graph Pad Software, San Diego, California, USA.

Results: The correlation between the parameters was found to be significant in all the subjects and also in the male and female subjects taken separately with a p value of < 0.0001.

Conclusion: This result suggests that NC can be used as a screening tool for evaluation of obesity instead of BMI & BFP.

KEY WORDS: Body Mass Index; Body Fat Percentage; Neck Circumference

INTRODUCTION

Overweight and obesity are the names given for ranges of weight that are more than what is generally considered healthy for any given height. These terms also indicate the weight range that shows an increase in the likelihood of certain diseases and other health problems.^[1] Obesity is one of the commonest nutrition disorder of the developed nations. Now it is now dramatically increasing in the developing nations like India too. With continuation of this trend we

would end up with the heaviest adult population ever. Obesity has reached epidemic proportions in India in the 21st century, with morbid obesity affecting 5% of the country's population. This is a cause of great concern. It is well documented that obesity contributes to many health problems like cardiovascular disorders, lipid & glucose metabolism disorders etc. We now know that upper body obesity is more strongly associated with diabetes, triglyceredaemia, hypertension , hyperinsulinaemia etc.^[2-4] Jean Vague^[5] was the first to describe the differences in body

morphology or patterns of body fat distribution and their relationship to health risk. Loubo Ben Noun in his study on Israeli subjects found that obese individual had thicker neck.^[6]

There are various methods by which body mass status can be evaluated. Measurement of weight & height, waist circumference, hip circumference, waist: hip ratio, Body Mass Index (BMI) etc though easy without need for any sophisticated instruments but require undressing. Other measures like USG, CT scan; MRI etc require sophisticated expensive instruments.^[7]

BMI does not adequately describe the type of obesity. W: H ratio, though it considers both waist and hip circumference, will show normal ratio if waist & hip increase in a coordinated manner & it also requires undressing. BFP requires special instrument for measuring the body fat.[8] But NC can be measured using a measuring tape with no need for undressing. If a simple and easy to perform procedure can be devised to be used as screening test to evaluate the body mass status, identification overweight or obese individuals will become simpler. Hence our objective was to assess whether NC can be used as a tool to evaluate body mass status though we do underestimate the usefulness of BMI or BFP as tools for evaluation of obesity status.

MATERIALS AND METHODS

This study was conducted in a medical college hospital in Mumbai after obtaining necessary permission from the institute and Ethics Committee approval. Every subject was informed about the test, the measurements that need to be taken, the aim of the study and signed consent form was taken from every subject. Males and females of the I MBBS students were included in the study. Detailed history and general examination was done to exclude any subject with Endocrinological disturbances. Tuberculosis, Diabetes Mellitus or debilitating disease and females with Polycystic Ovarian Disorders.

Body Mass Index: BMI of each subject was calculated by using Quetelet's Index where BMI is equal to Body weight in Kg upon Height in metres. Weight was measured using an electronic weighing scale and height was measured using a standard height measuring stand stadiometer (DETECTO SCALE).

Body Fat Percentage: BFP of each subject was measured using OMRON'S Body Fat Monitor which measures body fat percentage using the Bioelectrical Impedance (BI). Tissues having high water content such as muscles, blood vessels & bones are good conductors of electricity but fat tissues are not. Based on this principle Omron Body Fat Monitor Model HBF 306 applies a weak current of 50 Hz to $500\mu A$ to the body. The instrument measures the resistance offered to this current by fat tissue and other tissues of the body and Body fat Percentage is expressed as a direct reading.

Neck circumference: NC was measured using a non stretchable measuring tape at the middle of the neck between the mid cervical spine and mid anterior neck. In men with laryngeal prominence (Adam's apple) it was measured just below the prominence.^[6]

RESULTS

A sample size of 228 subjects was analyzed in this study with mean age 18.3 yrs,(SD \pm 0.6756) and mean weight 58.63 kg, (SD \pm 12.507) and mean height 166.9122cm (SD: \pm 13.749). Among the subjects were 136 males with mean age of 18.4370 (SD \pm 0.7082), mean weight 62.8014 kg (SD \pm 12.877) and mean height of 172.3529cm (SD \pm 14.8456). 92 were females with mean age of 18.1413 (SD \pm 0.5852), mean weight 52.4783 (SD \pm 8.941) and mean height of 158.8695 (SD \pm 5.912). The mean and SD for NC, BMI and BFP were calculated and tabulated. (Table No 1)

Stastical Analysis

Done by Linear regression analysis performed using Graph Pad Prism version 5.00 for Windows, Graph Pad Software, San Diego, California, USA (www.graphpad.com)

Table-1: The mean values of age, weight, height, BMI, BFP & NC of the subjects

			Commile	Ctd owner		
	Mean	SD	Sample	Std error		
	1 100.11	OD.	Size	of mean		
For all subjects						
Age	18.3171	6.756	228	0.0448		
Weight	58.6359	12.507	228	0.8283		
Height	166.9122	13.749	228	0.9106		
BFP	22.006	7.846	228	0.5196		
BMI	20.7515	3.728	228	0.5196		
NC	32.4507	3.523	228	0.2333		
For Males						
Age	18.37	0.7082	136	0.0609		
Weight	62.8014	12.877	136	1.104		
Height	172.3529	14.846	136	1.273		
BFP	18.8727	7.043	136	0.6039		
BMI	20.7386	3.811	136	0.3268		
NC	34.1014	2.309	136	0.198		
For Females						
Age	18.1413	0.5852	92	0.601		
Weight	52.4783	8.941	92	0.9322		
Height	158.8695	5.912	92	0.6164		
BFP	26.638	6.604	92	0.6885		
BMI	20.7706	3.623	92	0.3778		
NC	30.0107	3.599	92	0.3752		

Table-2: Correlation of BFP & BMI with NC in All Subjects

oubjects		
	BF%	BMI (Kg/M ²)
Best-fit values		
Clara	0.6711 ±	0.6368 ±
Slope	0.01647	0.007168
Y-intercept when X=0.0	0.0	0.0
X-intercept when Y=0.0	0.0	0.0
1/slope	1.490	1.570
95% Confidence Intervals		
Class	0.6388 to	0.6228 to
Slope	0.7034	0.6509
Goodness of Fit		
Sy.x	8.144	3.533
Is slope significantly non-zero?		
t	40.75	88.84
DF	228.0	227.0
P value	< 0.0001	< 0.0001
Deviation from zero?	Significant	Significant
Data		
Number of X values	228	228
Maximum number of Y	1	1
replicates	1	1
Total number of values	228	228
Number of missing values	0	0
Runs test		
Points above line	116	96
Points below line	113	132
Number of runs	83	101
P value (runs test)	< 0.0001	0.0736
Deviation from linearity	Significant	Not Significant

Correlation among the various parameters was calculated. The result of statistical analysis showed BFP & NC and BMI& NC in all the subjects showed significant correlation with a p value of <0.0001 at a confidence interval of 95%. Both BFP & NC and BMI& NC in males showed a significant correlation with a p value < 0.0001 at a confidence interval of 95%. BFP & NC and BMI& NC in females showed significant correlation with a p value of <0.0001 at a confidence interval of 95% (Table 2 to 4 & Figure 1 to 6)

Figure-1: Correlation of BFP and NC in All Subjects

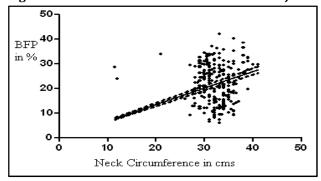


Table-3: Correlation of BFP & BMI with NC in Males

	BF%	BMI (Kg/M ²)
Best-fit values		
Clara	0.5587 ±	0.6104 ±
Slope	0.01609	0.007637
Y-intercept when X=0.0	0.0	0.0
X-intercept when Y=0.0	0.0	0.0
1/slope	1.790	1.638
95% Confidence Intervals		
Clana	0.5271 to	0.5955 to
Slope	0.5902	0.6254
Goodness of Fit		
Sy.x	6.412	3.044
Is slope significantly non-zero?		
t	34.73	79.94
DF	135.0	135.0
P value	< 0.0001	< 0.0001
Deviation from zero?	Significant	Significant
Data		
Number of X values	136	136
Maximum number of Y	1	1
replicates	1	1
Total number of values	136	136
Number of missing values	0	0
Runs test		
Points above line	60	55
Points below line	76	81
Number of runs	56	52
P value (runs test)	0.0217	0.0061
Deviation from linearity	Significant	Significant

Figure-2: Correlation of BMI and NC in All Subjects

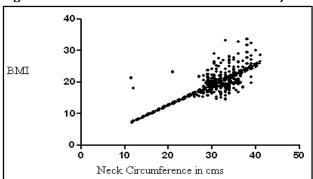


Figure-3: Correlation of BFP and NC in Males

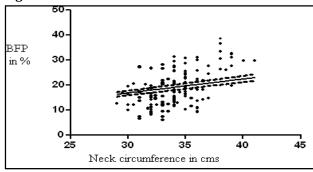


Table-4: Correlation of BFP& BMI with NC in Females

	BF%	BMI (Kg/M ²)
Best-fit values		
Slope	0.8825 ±	0.6866 ±
Stope	0.02230	0.01285
Y-intercept when X=0.0	0.0	0.0
X-intercept when Y=0.0	0.0	0.0
1/slope	1.133	1.456
95% Confidence Intervals		
Slope	0.8381 to	0.6611 to
Stope	0.9269	0.7122
Goodness of Fit		
Sy.x	6.465	3.725
Is slope significantly non-zero?		
t	39.57	53.43
DF	91.00	91.00
P value	< 0.0001	< 0.0001
Deviation from zero?	Significant	Significant
Data		
Number of X values	92	92
Maximum number of Y	1	1
replicates		
Total number of values	92	92
Number of missing values	0	0
Runs test		
Points above line	46	39
Points below line	46	53
Number of runs	44	48
P value (runs test)	0.3006	0.7080
Deviation from linearity	Not Significant	Not Significant

Figure-4: Correlation of BMI and NC in Males

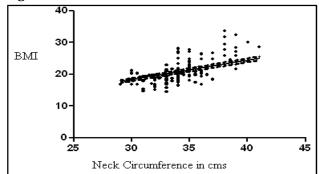


Figure-5: Correlation of BFP and NC in Females

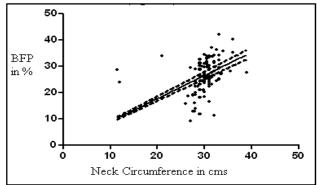
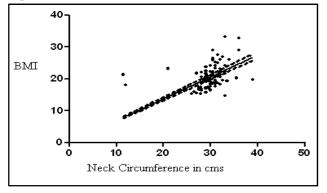



Figure-6: Correlation of BMI and NC in Females

DISCUSSION

The result of the study shows that NC correlated significantly with BMI and also with BFP in all the subjects, male and female taken together as well as when taken individual sex wise. The literature shows studies in adults as well as children with similar findings.[6,9,10] Ben -Noun et al[6] in his study of 979 subjects (460 and 519 Israeli men and women) showed a strong positive relation between NC &BMI for both men and women in his test samples. Olubukola O. Nafiu et al^[9] showed in their study of 1102 children, (52% male and 48% females) NC was significantly correlated with and age, BMI, waist circumference in both boys and girls, although the correlation was stronger in older children. NibalHatipogulu et al^[10] in their study of four hundred twelve overweight and obese patients (208 girls and 204 boys) and 555 healthy children (284 girls and 271 boys) aged 6-18 years showed a significant and positive correlations between BMI-NC, BMI-WC and WC-NC (p < 0.001). BMI and BFP are already used as a measures of obesity to identify the risk score with regards to cardio vascular and metabolic disorders, Insulin resistance etc. Measuring NC can be used as a simple, easy to measure screening test to evaluate body mass status of individuals and identify overweight or obese individuals on whom additional evaluation can be performed. The cut off value for NC to classify overweight and obesity is not available for different age groups of Indian population Hence the need to study a larger sample of all the age groups of Indian population is necessary.

CONCLUSION

This result suggests that NC can be used as a screening tool for evaluation of obesity instead of BMI & BFP.

REFERENCES

- 1. Centre for disease control and prevention.

 Defining overweight and obesity. Available from:

 http://www.cdc.gov/obesity/adult/defining.html
- Kaplan N.M. The deadly quartet, upper body obesity, glucose intolerance, hypertriglyceridemia and hypertension. Arch Intern Med 1989; 149(7); 1514- 1520
- Sheldon E. Litwin. Which measures of obesity best predict cardiovascular risk? J. Am Coll Cardiol. 2008; 52; 616-619; doi: 10.1016/j.jacc.2008.05.017 http://content.onlinejacc.org/cgi/content/full/52/8/616
- Robert H.Eckel . Obesity and Heart Disease: A Statement for Health care Professionals From the Nutrition Committee, American Heart Association. Robert H. Eckel, M.D. for the Nutrition Committee.

- Circulation. 1997;96;3248-3250. doi: 10.1161/01. CIR. 96.9.3248
- Enzi G., Busetto L., Inelmen E.M., Coin A., Sergi G., Historical perspective: Visceral obesity and related comorbidity in Joannes Baptista Morgagni's 'De sedibus et causis morborum per anatomen indagata. Int J Obes Relat Metab Disord 2003;Apr(4); 534-5 PMID: 12664088 [Pubmedindexed for MEDLINE]
- Liuobov (Louba) ben- Noun, Erza Sohar and Arie Laor. Neck circumference as a simple screening measure for identifying overweight and obese patients. Obesity Research; 2001; 9 (8); 470-477. doi: 10.1038/oby.2001.61
- 7. Jacob C. Seidell and Katherine M. Flegal. Assessing obesity: Classification and epidemiology. British Medical Bulletin; 1997; 53(2); 238 -252
- 8. Shea J.L., King M.T., Yi.Y., Gulliver W., Sun G., Body fat percentage is associated with cardiometabolic dysregulation in BMI- defined normal weight subjects. Nutr Metab Cardiovasc Dis. 2011; Jan 5. [Epub ahead of print]; PMID:21215604 [Pubmed as supplied by publisher]
- Olubukola O. N., Constance B., Joyce L., Terri Voepel-Lewis, Shobha Malaviya and Tremper K.. Neck circumference as a screening measure for identifying children with high Body mass Index. Pediatrics; 2010; 126(20; e306-e310. doi 10.1542/peds. 2010-0242
- 10. Nibal Hatipogulu, Mazicioglu M., Kurtoglu S. and Kendirici M.. Neck circumference: an additional tool of screening overweight and obesity in childhood. Eur J Pediat; 2010169 (6); 733-739. doi: 10.1007/s00431-009-1104z

Cite this article as: Pillai C, Udhoji P, Rathod S, Pillai K. Comparison of body mass index, body fat percentage and neck circumference as tools for evaluation of obesity. Natl J Physiol Pharm Pharmacol 2012; 2:167-171.

Source of Support: Nil

Conflict of interest: None declared